Challenge Question: If $y=x^m(bx-c)^n$ where $m,n$ are positive integers, and $b,c$ are non-zero real numbers, show that the first derivative equals
$$y'=\dfrac{dy}{dx}=x^{m-1}(c-bx)^{n-1}\bigg( mc -b(m+n)x\bigg)$$
Challenge Question: If $y=x^m(bx-c)^n$ where $m,n$ are positive integers, and $b,c$ are non-zero real numbers, show that the first derivative equals
$$y'=\dfrac{dy}{dx}=x^{m-1}(c-bx)^{n-1}\bigg( mc -b(m+n)x\bigg)$$